Xem bản đẹp trên 123doc.vn

các dạng đại số tổ hợp

Bài tập về đại số tổ hợp
Quy tác cộng, Quy tắc nhân:
1. Một trờng phổ thông có 12 học sinh chuyên tin và 18 học sinh chuyên toán. Thành lập
một đoàn gồm hai ngời sao cho có một học sinh chuyên toan và một học sinh chuyên tin.
Hỏi có bao nhiêu cách lập một đòn nh trên?
2. Từ các số 1,2,3,4,5,6,7,8.
a. Có bao nhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau?
b. Có bao nhiêu số gồm 5 chữ số đôi một khác nhau và chia hết cho 5?
3. Có thể lập bao nhiêu số chẳn gồm 5 chữ số khác nhau lấy từ 0,2,3,6,9?
4. Có bao nhiêu số chẳn có 4 chữ số đôi một khác nhau?
5. Từ các sô 0,1,2,3,4,5.
a. Có bao nhiêu số có ba chữ số khác nhau chia hết cho 5
b. có bao nhiêu số có 3 chữ số khác nhau chia hết cho 9?
Hoán vị.
1. Cho 5 chữ số 1,2,3,4,5.
a. Có bao nhiêu số có 5 chữ số khác nhau?
b. Có bao nhiêu số có 5 chữ số đôi một khác nhau và bắt đầu là số3?
c. Có bao nhiêu số có 5 chữ số đôi một khác nhau và không bắt đầu bằng số 1.
d. Có bao nhiêu số có 5 chữ số khác nhau và bắt đầu la chữ số lẻ?
2. Có bao nhiêu xếp 5 bạn A,B,C,D, E vào một ghế dài sao cho:\
a. Bạn C ngồi chính giữa.
b, Hai bạn A, E ngồi hai đầu ghế?
3. Một học sinh có 12 cuốn sách đôi một khác nhau trong đó có 4 cuốn Văn, 2 cuốn
Toán, 6 cuốn Anh Văn, Hỏi có bao nhiêu cách sắp các cuốn sách lên một kệ dài sao cho
các cuốn cùng môn nằm kề nhau?
4. Có hai bàn dài, mỗi bàn có 5 ghế. Ngời ta muốn xếp chổ ngồi cho 10 học sinh gồm 5
nam và 5 nữ. Hỏi có bao nhiêu cách sắp xếp nếu:
a. Các học sinh ngồi tuỳ ý?
b. Các học sinh nam ngồi một bàn, học sinh nữ ngồi một bàn?
5. Xét các số gồm 9 chữ số trong đó có 5 chữ số 1 và 4 chữ số còn lại là 2,3,4,5. Hỏi có
bao nhiêu cách sắp nếu
a. Năm chữ số 1 xếp kề nhau
b. Năm chữ số 1 xếp tuỳ ý?
5. Giải phơng trình
6
1
)!1(
)!1(!
=
+

x
xx
với x là số tự nhiên khác 0.
6. Giải bất phơngtrình
12
4
15
.
+
+
<
nnn
n
PPP
P
Chỉnh hợp.
1. Từ các số 1,2,3,4,5,6 lập bao nhiêu số có 4 chữ số đôi một khác nhau?
2. Có bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau??
3. Từ các số 0,1,3,5,7 lập bao nhiêu số gồm 4 chữ số khác nhau
a. Chia hết cho 5
b. Không chia hết cho 5?
4. Từ các số 0,1,2,3,4,5,6,7 lập bao nhiêu số có 5 chữ số khác nhau trong đó
a. Số tạo thành là số chẳn?
b. Một trong 3 chữ số đầu tiên phải có mặt số 1?
c. nhất thiết phải có mặt chữ số 5??
d. Phải có mặt hai số 0 và 1?
5. Từ các số 1,2,3,4,5,6,7 lập đựoc bao nhiêu số có 3 chữ số khác nhau và nhỏ hơn 276??
6, Giải các phơng trình và bất phơng trình sau:
a.
)2(672.
2
ã
2
xxxx
PAAP
+=+
b.
xAA
xx
215
23
+
c.
8910
9
xxx
AAA
=+
Tổ hợp.
1. Đề thi trắc nghiệm có 10câu hỏi Học sinh cần chọn trả lời 8 câu
a. Hỏi có mấy cách chọn tuỳ ý?
b. Hỏi có mấy cách chọn nếu 3 câu đầu là bắt buộc?
c. Hỏi có bao nhiêu cách chọn 4 trong 5 câu đầu và 4 trong 5 câu sau??
2. Một tổ có 12 học sinh. Thầy giáo có 3 đề kiểm tra khác nhau. Cần chọn 4 học sinh cho
mỗi đề kiểm tra. Hỏi có mấy cách chọn??
3. Có 5 tem th khác nhau và 6 bìth khác nhau. Ngời ta muốn chọn từ đó ra 3 tem th và 3
bì th và dán 3 tem th lên 3 bì th đã chọn. Mỗi bì thchỉ dán 1 tem. Hỏi có bao nhiêu cách
làm nh thế??
4. Một lớp có 20 học sinh trong đó có 2 cán bộ lớp. Hỏi có bao nhiêu cách chọn 3 ngời đi
dự Hội nghị sao cho trong đó có ít nhất 1 cán bộ lớp?
5. Có 5 nhà Toán học nam, 3 nhà Toán học nữ và 4 nhà Vật lý. Muốn lập một đoàn công
tác có 3 nguời gồm cả nam lẫn nữ, cần có nhà Toán hoc lẫn Vật lý. Hỏi có bao nhiêu cách
chọn?
6. Một đội Văn Nghệ gồm 10 nguời trong đó có 6 nữ, 4 nam. Có bao nhiêu cách chia đội
văn nghệ:
a. Thành hai nhóm có số nguời bằng nhau và mỗi nhóm có số nữ bằng nhau?
b. Có bao nhiêu cách chọn 5 ngời trong đó không quá một nam?
7. Có hai đờng thẳng song song d
1
và d
2
. Trên d
1
lấy 15 điểm phân biệt, trên d
2
lấy 9 điểm
phân biệt. Hỏi có bao nhiêu tam giác mà có 3 đỉnh là các điểm đã lấy??
8. Trong một hộp có 7 quả cầu xanh, 5 quả cầu đỏ và 4 quả cầu vàng, các quả cầu đều
khác nhau. Chọn ngẫu nhiên 4 quả cầu trong hộp. Hỏi có bao nhiêu cách chọn
a. sao cho trong 4 quả cầu chọn ra có đủ cả ba màu?
b. Không có đủ ba màu?
9. Một đội thanh niên tình nguyện có 15 ngời gồm 12 nam và 3 nữ. Hỏi có bao nhiêu cách
phân công đội thanh niên tình nguyện đó về giúp đỡ ba tỉnh miền núi sao cho mỗi tỉnh có
4 nam và 1 nữ??
10. Trong một môn học, thầy giáo có 30 câu hỏi khác nhau gồm 5 câu hỏi khó, 10 câu
trung bình và 15 câu dễ. Từ 30 câu hỏi đó lập đợc bao nhiêu đề kiểm tra, mỗi đề gồm 5
câu hỏi khác nhau sao cho trong mỗi đề nhất thiết phải có đủ 3 loại câu hỏi và số câu hỏi
dễ không ít hơn 2??
11. Đội TNXK của một trờng có 12 học sinh, gồm 5 học sinh lớp A, 4 học sinh lớp B, 3
học sinh lớp C. Cần chọn 4 học sinh làm nhiệm vụ sao cho 4 học sinh này thuộc không
quá 2 trong 3 lớp trên. Hỏi có bao nhiêu cách chọn nh vậy??
12. i tuyn hc sinh gii gm 18 em, gm 7hc sinh khi 12, 6 hc sinh khi 11, 5 hc
sinh khi 10. C 8 em i d tri hố sao cho mi khi cú ớt nht 1 em c chn. Hi cú
bao nhiờu cỏch c nh vy?
PHơng trình liên quan đến công thức tổ hợp:
Giải các PT và BPT sau:
1.
xxCCC
xxx
14966
1221
=++
2.
123
14

=+
x
xxx
CCA
3.
3032
22
1
<+
+
xx
AC
4.
10
6
2
1
32
2
+
xx
x
x
C
x
AA
5 Giải hệ





=
=+
8025
9052
y
x
y
x
y
x
y
x
CA
CA
6.
23
2
20
nn
CC
=
Các bài toán tổng hợp:
1. Có thể lập bao nhiêu số có 8 chữ số từ các số 1,2,3,4,5,6. trong đó 1 và 6 có mặt hai
lần, các số còn lại 1 lần.
2. Có bao nhiêu số chẳn gồm 6 chữ số khác nhau trong đó chữ số đàu tiên là số lẻ.
3. Có bao nhiêu số gồm 6 chữ số khác nhau trong đó có đúng 3 chữ số chẳn và 3 chữ số
lẻ.
4, Có baonhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau trong đó có mặt số 0 nhng
không có mặt số 1,
5. Có bao nhiêu số tự nhiên gồm 7 chữ sô biết rằng sô 2 có mặt 2 lần, số 3 có mặt 3 lần,
các chữ số còn lại không quá một lần?
6.Cho hai ng thng song song d
1
v d
2
. Trờn ng thng d
1
ly 10 im phõn bit,
trờn ng thng d
2
cú n im phõn bit (n>1). Bit rng cú 2800 tam giỏc cú nh l cỏc
im ó cho. Tỡm n.
7.T cỏc ch s 0,1,2,3,4,5,6, cú th lõp bao nhiờu s chn, mi s cú 5 ch s khỏc nhau
trong o cú ỳng 2 ch s l v hai ch s l ú ng cnh nhau?
8. T cỏc s 0,1,2,3,4 cú th lp baonhiờu s t nhiờn cú 5 ch s khỏc nhau? Tớnh tng tt
c cỏc s t nhiờn ú.
9..Cú bao nhiờu s t nhiờn gm 5 ch s sao cho: Ch s 0 cú mt hai ln, s 1 cú mt 1
ln, 2 s cũn li phõn bit
10 Cú bao nhiờu s t nhiờn cú bn ch s sao cho khụng cú ch s no lp li 3 ln.
11.. Cú bao nhiờu s t nhiờn cú 7 ch s sao cho: S 2 cú mt 2ln, s 3 cú mt 3 ln, cỏc
s cũn li khụng quỏ mt ln.
12. Cho a giỏc u A
1
, A
2
, ......A
2n
ni tip ng trũn tõm O, bit rng s tam giỏc cú cỏc
nh l 3 trong 2n im A
1
, A
2
, ......A
2n
gp 20 ln s hỡnh ch nht cú nh l 4 trong 2n
im.Tỡm n.
13 T cỏc s 1,2,.....,6. Lp bao nhiờu s cú 3 ch s khỏc nhau v chia ht cho 3.
14.. Cú bao nhiờu s t nhiờn chn gm 5 ch s khỏc nhau v khụng bt u bng 123.
Nhị thức Newton
I. áp dụng công thức khai triển.
1. Tìm hệ số của số hạng thứ t trong khai triển
10
1






+
x
x
2. Tìm hệ số của số hạng thứ 31 trong khai triển
40
2
1






+
x
x
3. Tìm hạng tử chứa x
2
của khai triển:
(
)
7
3 2
xx
+

4. Tìm hạng tử không chứa x trong các khai triển sau:
a.
12
3
3






+
x
x
b.
7
4
3
1








+
x
x
5. Tìm hệ số của x
12
y
13
trong khai triển của (2x-3y)
25
6. Tìm hạng tử đứng giữa trong khai triển
10
3
5
1








+
x
x
7. trong khai triển
21
3
3








+
a
b
b
a
tìm hệ số của số hạng chứa a và b có số mũ bằng
nhau??
II. Khai triển với giả thiết có điều kiện.
1/ Biết khai triển
n
x
x






+
1
2
. Tổng các hệ số của số hạng thứ nhất, hai, ba là 46. Tìm số
hạng không chứa x?
2/Cho biết tổng ba hệ số của ba số hạng đầu tiên trong khai triển
=







n
x
x
2
2
là 97. Tìm
hạng tử của khai triển chứa x
4.
3/ Cho khai triển
n
n
n
nn
n
n
n
n
CxCxCx
3
1
)1.......(
3
1
3
1
110
+=








. Biết hệ số của số hạng
thứ ba trong khai triểnlà 5. Tìm số hạng chính giữa??
4/ Cho khai triển
nn
n
n
n
n
x
CxC
x
x )
2
(........)()
2
(
2
30
2
3
++=+
. Biết tổng ba hệ số đầu là
33.Tìm hệ số cũa x
2
.
5/ Tìm số hạng chứa x
8
trong khai triển
n
x
x






+
5
3
1
. Biết rằng
)3(7
3
1
4
+=
+
+
+
nCC
n
n
n
n
.
III. Chứng minh hoặc tính tổng biểu thức tổ hợp:
1/ Khai triển (3x-1)
16
. Từ đó chứng minh
1616
16
1
16
150
16
16
2..........33
=++
CCC
2/ Chứng minh:
a.
nn
nnnn
CCCC 2.......
210
=++++
b.
n
nnn
n
nnn
CCCCCC
2
2
2
2
0
2
12
2
3
2
1
2
...............
+++=+++

3/ Chứng minh rằng:
nn
n
n
nnn
n
CCCC 4
3
1
..........
3
1
3
1
3
2
3
10
=






++++
4/ Tính tổng
a. S=
n
nnn
CCC
2
2
2
2
0
2
......
+++
b. S =
12
2
3
2
1
2
.........

+++
n
nnn
CCC
5/ Chứng minh rằng:
a.
10022004
2004
2
2004
0
2004
2........
=+++
CCC
b.
2
13
2.......22
2004
2004
2004
20044
2004
42
2004
20
2004
+
=+++
CCCC
6/ Tìm hệ số của x
7
trong khai triển (2-3x)
n
trong đó n thoả mãn hệ thức sau
1024.......
12
12
3
12
1
12
=+++
+
+++
n
nnn
CCC
7/ Giải phơng trình sau
12....
20072
2
4
2
2
2
=+++
n
nnn
CCC
8/ Tìm hệ số của số hạng chứa x
26
trong khai triển
n
x
x







7
4
1
biết n thoả mãn hệ thức
12.......
2012
12
3
12
2
12
1
12
=++++
+
++++
n
nnnn
CCCC
.
9/ Tìm hệ số của số hạng chứa x
10
khi khai triển (2+x)
n
biết
2048)1(....333
22110
=+++

n
n
n
n
n
n
n
n
n
CCCC
IV. Khai triển nhiều hạng tử:
1/ Tìm hệ số của x
6
trong khai triển (1+x
2
(1+x))
7
thành đa thức.
2/ Tìm hệ số của số hạng chứa x
4
khi khai triển (1+2x+3x
2
)
10
.
3/ Tìm hệ số chứa x
10
khi khai triển
P(x) = (1+x) + 2(1+x)
2
+3(1+x)
3
+......+15(1+x)
15
.
4/ Tìm hệ số của x
5
trong khai triển thành đa thức của x(1-2x)
5
+ x
2
(1+3x)
10
5/.Tỡm s hng khụng cha x khi khai trin P(x) =
9
2
1
21






+
x
x
6/.Tỡm h s ca s hng cha
3
1
x
khi khai trin P(x) =
7
3
2
1
21








+
x
x
V Sử dụng đạo hàm hoặc tích phân
1/ Chúng minh hệ thức sau
a.
1321
2......32

=++++
nn
nnnn
nnCCCC
b.
1
12
1
1
...........
3
1
2
1
1
210
+

=
+
++++
+
n
C
n
CCC
n
n
nnnn
2/ Tính tổng
a. S =
14
14
3
14
2
14
1
14
14.......32 CCCC
++
b. S =
2008
2008
2
2008
1
2008
0
2008
2009........32 CCCC
++++