De on kiem tra HKI, khoi 11

Đây là phiên bản tài liệu đơn giản

Xem phiên bản đầy đủ của tài liệu De on kiem tra HKI, khoi 11


Phần chung

sin9 3 cos9 1x x− =

2 7 2
, ,
18 9 54 9
k k
x x k
π π π π
= + = + ∈¢
 !  "#$%%&%%'%()* +,-./#$0. 1+, "#$2! ,/
3456
##$
78-9 -#: #;  <$+,(=>?! #/@ 1:,(=?/@A
B5 @
#
15
( )
216
P H =
C#$0.
n
-D
2 2 2 3 3 3
2 100
n n
n n n n n n
C C C C C C
− −
+ + =
#
4n =
&-BEAF -G9H?I% -,JKL?M

NIM7

O
3LP?M7

NIMC

OCQ! RS3R0+TJKLJ
KLP
#US3R0+TJKLJKLP(
• <3R0VW%73X#$3R02O
• <3R0V%73X#$3R02OW
Phần riêng7
Theo chương trình cơ bản
5,
cos3 4cos2 3cos 4 0x x x− + − =
#
,
2
x k k
π
= + π ∈ ¢
,L-Y
Z
 -
[
\L]% -
[
,
[
I\L](,
Z
Y
Z
,3,
Z
\(,
Z
,
[
I(
[
-
^
_%
`8-
[

^
(,
Z
/.
a
 /
a
, ,
[
 ,
^
3,
Z
L
, Y
Z
,-.
a
 /
a
,
Z
b
a
]3
[
b
^
b
a
\_`
+ Y
Z
.
[
c.
^
 /
a
,Y
Z
 -
[
\L] b
[
+
a
b
^
b
a
\_`
Theo chương trình nâng cao
5+de
n
(#$/I.c%f
3 3−n
a
(A#$ g,
3 3−n
x
-2,,
h  g,
( )
( )
2
1 2+ +
n
n
x x 
n

3 3
26

=
n
a n
#
5n =
+L- 1\L] 1!I(,\]iiL%\]jLf_%`%k
(=(*(/ g,\%L]%\
, Lhl_k`iiL
+ -,! \]3mknii\]
( )
F SD∈
Lhln(,- g,
BE_`k3e]1#/I,TcA g, 12 ;+o
_`k(6

Phần chung 

2 2
4sin 5sin cos 6cos 0x x x x− − =

3
arctan2 , arctan ;
4
x k x k k
 
= + π = − + π ∈
 ÷
 
¢
L1+,-./#$.p5 "#$q92! ,/ "#$=/.
2! %-1 1B "#$2q 1B "#$6
#775#$
7_9:0Cr/ =/4%5r/ =/?,Lfs/.Cr/ =/>?! 
#/@-Cr/1 1 r//43/?,
 #
194
( )
210
P A =
CA#$ g,
8
x
-2,,h  g,
( )
8
2
1 1x x
 
+ −
 
#tA#$ g,
8
x
(
3 4
8 8
3 238C C+ =
&-BE3eAF -G93/q1 H?I% -Sr/,I<H1 
r/,I
4
π
r/,Sr/,I
,
4
O
Q
π
 
 ÷
 
 g,JKL?M

NI

OC
#LP
2 2
2 2
4
2 2
x y
   
− + − =
 ÷  ÷
   
Phần riêng7
Theo chương trình cơ bản
5,
( ) ( )
2cos 1 2sin cos sin2 sinx x x x x− + = −
#
2 , ,
3 4
x k x k k
π π
= ± + π = − + π ∈ ¢
,L-Y
Z
 -
[
\L] -
[
,
[
I\L](,
Z
Y
Z
+Y
Z
,
Z
-
^
H(,
Z
,-.
a
,

Z
 8
[
-%_%`%U%8-
[

^
(,
Z
/.
a
 ,
[
-,
^
b
a
\%L%L]
, Y
Z
,-.
a
 /
a
,
Z
b
a
H3
[
_`U
+ Y
Z
.
[
c.
^
 /
a
,Y
Z
 -
[
2 b
[
+
a
_`U
Theo chương trình nâng cao
5+A#$ g,
7
x
-2,,h 
( )
2n
2 3− x
%-1/I.c
-D
1 3 5 2n 1
2n 1 2n 1 2n 1 2n 1
C C C ... C 1024
+
+ + + +
+ + + + =
#
2 10n =
%A#$ g,
7
x
(
7 7 3
10
3 2 2099520− = −C
+L- 1\L] 1!I(9h! (pfH(,- g,,
J S-\L3]%_(/ g,\Q! RTcA g, 12
;+oBEr/,_%#-#-3eH3L
7
Phần chung

sin 2 sin5 cosx x x= −

, ,
16 2 8 3
k k
x x k
π π π π
= + = + ∈¢
 !  "#$%%7%C%&%5%%'%u 1()* +,-./#$0.%v#$p
5 "#$2! ,/3w !  "#$ F %b%+l'
#CC#$
7_q
^
q
^

^
&3.+?,%C3.+-
a
3,
Z
73.+3,
Z
L-
^
<x/.,
3.+Y
[
?,
[
#/<
[
.
a
 -
^

^
,3.+ /
Z
,
Z
/
 #
19
( )
66
P H =
C
n
(#$/I.c-D+@
3 2
2 9
n
n n
A C n

+ ≤
#
3, 4n n= =
&-BE3eAF -G93/q1 H?I% -,Vy%J
Ec 17?MINuO3JKL?

NI

N?M5IN5OtDI
?! RJEcP3JKLP8-h0( g,c%L
r/,S$?hr/,<V
#cP7?MIMO%LP?M7

NIM

OC
Phần riêng7
Theo chương trình cơ bản
5,
2 2
cos 3 .cos2 cos 0x x x− =
#
,
2
k
x k
π
= ∈ ¢
,L- 1\L] 1!I(9h! (pf_3`(=(*(f
< g,,! \3\]yk(/ g,L
, Lhl_`ii]
+ Q! RTcA 1\L] ;+o_`k
Theo chương trình nâng cao
5+f
1 2 11
, ,...,a a a
( ! A#$-2,#,/
( ) ( )
10
11 10 9
1 2 11
1 2 ...+ + = + + + +x x x a x a x a
tDI>A#$
5
a

#
5 4
5 10 10
2 672= + =a C C
+L-
[
c.
^
\L].\](<
[
I/.
a
_%. ,
^
L(<
[
Iq
^
.
a
`
+<
[
2Y
Z
2,
[
3,
Z
L-
^
U(,
Z
b
^
b
a
r/,
Z
b
a
_`3,
Z
#-#-3
[
L]
, Q,
[

^
.
[
c.
^
 /
a
,
[
c.
^
\L]2 b
[
+
a
U
+ Q,
[

^
3
^
Y
[
`.L#,/ -.
[
c.
^
(,
Z
q
^
Y
Z
+Y
Z
,
Z


Đây là phiên bản tài liệu đơn giản

Xem phiên bản đầy đủ của tài liệu De on kiem tra HKI, khoi 11