BỨC XẠ NHIỆT

Đây là phiên bản tài liệu đơn giản

Xem phiên bản đầy đủ của tài liệu BỨC XẠ NHIỆT

Chương VIII

BỨC XẠ NHIỆT



§§1. ĐỊNH NGHĨA.
Một vật phát ra bức xạ được gọi là nguồn bức xạ. Sự phát bức xạ của một vật có thể là
do nhiều nguyên nhân : vật bị kích thích bởi ánh sáng, bằng sự phóng điện, do tác dụng hóa
học, ... Trong chương này, ta khảo sát sự bức xạ nhiệt. Đó là hiện tượng nhiệt bên trong vật
biến thành năng lượng bức xạ phát ra. Thông thường, một vậ
t phát ra bức xạ thấy được đưa
lên một nhiệt độ trên 500oC. Nhiệt độ của vật càng cao thì năng lượng bức xạ phát ra càng
nhiều. Ở các nhiệt độ thấp hơn, vật cũng phát bức xạ nhưng thuộc vùng hồng ngoại nên mắt
ta không nhận thấy được.

§§2. CÁC ĐẠI LƯỢNG TRONG PHÉP ĐO NĂNG LƯỢNG BỨC XẠ.
* Công suất bức xạ:
Người ta định nghĩa công su
ất bức xạ của nguồn là năng lượng do nguồn phát ra không
gian xung quanh trong một đơn vị thời gian.
Nếu (W là năng lượng bức xạ toàn phần (gồm tất cả các độ dài sáng và phát ra theo tất
cả mọi phương) phát ra trong thời gian (t thì công suất phát xạ (toàn phần) là :

(2.1)


Công suất phát xạ được tính ra Watt.
* Năng suất phát xạ toàn phần:
- Năng suất phát xạ toàn phần được định nghĩa là năng lượng bứ
c xạ phát ra (gồm tất cả
các độ dài sóng và theo tất cả mọi phương) bởi một đơn vị diện tích trên bề mặt của vật bức
xạ trong một đơn vị thời gian.
Nếu (W là năng lượng bức xạ toàn phần phát ra bởi một diện tích ds của bề mặt vật bức
xạ trong một đơn vị thời gian thì năng suất phát xạ toàn phần là :

(2.2)


R đươc tính ra Watt/m2.
* Hệ số phát xạ đơn sắc:
Bấy giờ ta xét các bức xạ có độ dài sóng ở trong khoảng ( và ( + d( (d( rất nhỏ). Năng
lượng (W( phát ra theo mọi phương bởi một diện tích ds trong một đơn vị thời gian mang
bởi các đơn sắc trên, thì tỉ lệ với diện tích ds và với d(. Do đó ta có thể viết:
(2.3)

R( được gọi là hệ số phát xạ đơn sắc ứng với độ
dài sóng ( và được tính ra Watt/m3
trong hệ thống đơn vị SI.
Năng lượng toàn phần phát ra trong một đơn vị thời gian bởi diện tích ds là :
dsdRWW
.
0
∫∫






==

λδδ
λλ

so với : (W = Rds
t
W
P


=
ds
W
R
δ
=

λδ
λλ
ddsRW
..=

Ta có : R =Ġ (2.4)
R và R( tùy thuộc vào nhiệt độ của vật bức xạ.
* ĐỘ CHÓI NĂNG LƯỢNG.
Xét một diện tích vi phân ds bao quanh một điểm A trên bề mặt của một vật bức xạ và
xét một chùm tia bức xạ có góc khối d( với phương
trung bình là AA’. Năng lượng dW mang bởi chùm
tia (gồm tất cả các độ dài sóng) trong một đơn vị thời
gian thì tỉ lệ với góc khối d( và với diện tích d( (hình
chi
ếu của ds xuống mặt phẳng thẳng góc với phương
trung bình AA’: d( = dscosi với i là góc hợp bởi pháp
tuyến AN của diện tích ds với phương AA’). Ta có
thể viết dW dưới dạng :
(2.5)

Hệ số tỉ lệ e chỉ tùy thuộc vào bản chất và nhiệt độ của nguồn, và tùy thuộc vào phương
AA’. Ta thấy e chính là năng lượng phát ra trong một đơn vị thời gian theo phương AA’ bởi
một đơn vị diệ
n tích của bề mặt phát xạ thẳng góc với phương AA’ và ứng với một chùm tia
có góc khối bằng một đơn vị:

ωσ
dd
dW
e
.
=

Hệ số e được gọi là độ chói năng lượng của nguồn theo phương AA’ (ta thấy biểu thức
của e giống như biểu thức của độ chói B trong trắc quang học B =Ġ).
* HỆ SỐ CHÓI NĂNG LƯỢNG ĐƠN SẮC.
Bức xạ phát ra bởi một nguồn có thể gồm nhiều đơn sắc. Năng lượng phát ra ứng với các
đơn sắc thì không bằng nhau. Do đó người ta
đưa vào một đại lượng đặc trưng trong sự bức
xạ, gọi là hệ số chói năng lượng đơn sắc e(. Nếu chùm tia bức xạ trên gồm các đơn sắc có
độ dài sóng ở trong khoảng ( và ( + d( thì năng lượng mang bởi chùm tia trên trong một đơn
vị thời gian là :

(2.6)

Năng lượng của chùm tia trên và kể tất cả mọi độ dài sóng là:
ωσ
λλλ
dddedWdW
...
00
∫∫
∞∞






==

So sánh với công thức (2.5) ta có ngay :
0
.
eed
λ
λ

=

(2.7)
Ta thấy, theo công thức (2.6), theo một phương nào đó, nếu e( càng lớn thì năng lượng
bức xạ phát ra càng nhiều, vật bức xạ càng mạnh.


§§3. HỆ SỐ HẤP THỤ.
Xét một chùm tia bức xạ gồm các độ dài sóng ở trong khoảng ( và ( + d( chiếu tới một
diện tích vi phân ds bao quanh điểm A của một vật, với phương trung bình là (. Năng lượng
tới ds trong một đơn vị thời gian dW’(. Một phầ
n dW’’( của năng lượng trên bị ds hấp thụ.
Người ta định nghĩa hệ số hấp thụ của vật tại điểm A, theo phương (, đối với độ dài sóng (
và ở nhiệt độ T của vật là :

(3.1)
ωσ
ddedW
...=

λωσ
λλ
dddedW ...=

ds


A


A
λ
λ
λ
'
''
dW
dW
a =


a là tỷ số giữa hai đại lượng cùng thứ nguyên, do đó không có đơn vị. Với mọi vật, ta có
0 ( a( ≤ 1.


§§4. VẬT ĐEN.
Vật đen là những vật hấp thụ hoàn toàn năng lượng bức xạ chiếu tới, đối với mọi độ dài
sóng và đối với mọi góc tới. Nghĩa là với vật đen ta có a( = 1 với tất cả các độ dài sóng. Như
vậy nếu ta chiế
u tới vật đen một tia sáng thì tất cả đều bị vật hấp thụ, không có ánh sáng
phản xạ, không có ánh sáng khuyếch tán, cũng không có ánh sáng truyền qua. Vì vậy, gọi là
vật đen (thực ra danh từ này không chỉnh lắm, vì, mặc dù vậy, vật có thể phát xạ).









Trong thực tế, ta không có được một vật đen tuyệt đối theo đúng định nghĩa, vì không có
vật nào hấp thụ hoàn toàn năng lượng t
ới. Tuy nhiên một bình kín C có đục một lỗ thủng
nhỏ, bên trong bôi đen bằng mồ hóng, có thể coi là một vật đen, bức xạ khi đi qua lỗ hổng
vào bên trong bình, phản xạ nhiều lần liên tiếp bên trong bình, do đó hầu hết năng lượng
bức xạ đều bị hấp thụ. Diện tích lỗ hổng vừa là bề mặt hấp thụ vừa là bề mặt phát xạ (khi
phát xạ, bứ
c xạ từ trong thoát ra cũng qua lỗ hổng này).
§§5.ĐỊNH LUẬT KIRCHHOFF.
Xét một bình kín C không cho bức xạ đi qua, bên trong là chân không và được giữ ở một
nhiệt độ không đổi T. Trong bình là một vật M.
Thí nghiệm cho thấy dù vật M làm bằng chất gì
và có nhiệt độ ban đầu là bao nhiêu thì sau một
thời gian, nhiệt độ của M cũng bằng với nhiệt độ
T của bình. Trong trường hợp này, sự truyền
nhiệt không thể xảy ra do hi
ện tượng dẫn nhiệt
hay hiện tượng đối lưu, mà sự cân bằng được
thực hiện là do sự trao đổi năng lượng dưới dạng
bức xạ giữa bình C và vật M. Thành trong của
bình phát ra bức xạ (hoặc phản chiếu). Năng
lượng bức xạ này khi chiếu tới M thì một phần bị vật M hấp thụ, biến thành nhiệt năng của
các nguyên tử bên trong M. Nhưng đồ
ng thời, vật M cũng phát ra bức xạ (năng lượng bức
xạ này được chuyển hóa từ nhiệt năng của các nguyên tử của M). Giả sử lúc đầu nhiệt độ
của vật M thấp hơn nhiệt độ của bình C. Hiện tượng hấp thụ ở M mạnh hơn hiện tượng phát
xạ, nhiệt độ của M tăng lên. Nhiệt độ của M càng cao thì hiện tượng phát xạ
càng mạnh. Tới
một lúc năng lượng do M phát ra bằng năng lượng thu vào trong cùng một thời gian ta có sự
cân bằng nhiệt độ của vật M và của bình C bằng nhau.
Gọi e
λ
và a
λ
lần lượt là hệ số chói năng lượng đơn sắc và hệ số hấp thụ của vật M tại
một điểm A đối với phương AA’ và đối với độ dài sóng λ. Xét chùm tia bức xạ phát ra bởi
một diện tích vi phân ds bao quanh điểm A, có gốc khối dωvà phương trung bình AA’.
C
H.2
H.3
A


dS



M
Năng lượng mang bởi chùm tia này trong một đơn vị thời gian và đối với các độ dài sóng ở
trong khoảng λ và λ + d
λ
là:
dW
λ
= e
λ
. dσ . dω . d
λ

(d
δ
= ds.cosi là hình chiếu của ds xuống mặt phẳng thẳng góc với phương AA’).
Bây giờ ta xét chùm tia trên nhưng theo chiều ngược lại, nghĩa là xét năng lượng do bình
C bức xạ vào diện tích ds của vật M. Năng lượng này (trong một đơn vị thời gian và ứng với
cùng các độ dài sóng trên) truyền qua khoảng chân không trong bình và có trị số là:
dW

λ
= E
λ
. dσ . dω . dλ

(5.1)
E
λ
là hệ số tỉ lệ. Người ta chứng minh được E
λ
không tùy thuộc bản chất của thành bình
và phương của chùm tia sáng, mà chỉ tùy thuộc nhiệt độ T và độ dài sóng λ. Như vậy E
λ
= E
(T, λ) là một hàm phổ biến theo nhiệt độ T và độ dài sóng λ (phổ biến vì chung cho mọi
vật). E
λ
được gọi là cường độ riêng của bức xạ nhiệt trong chân không.
Phần năng lượng bị diện tích ds hấp thụ là : dW’’
λ
= a
λ
. dW’== a
λ
. E= . dδ . dω . d
λ
.
Trong điều kiện cân bằng ta phải có :
dW

λ
= dW
’’
λ
Suy ra : e
λ
= a
λ
. E
λ


Vậy (5.2)


Dựa vào hệ thức trên, định luật Kirchhhoff được phát biểu như sau :
Tỉ số giữa hệ số chói năng lượng đơn sắc e
λ
và hệ số hấp thụ a
λ
tại một điểm trên bề mặt
của một vật, lấy theo cùng một độ dài sóng và cùng một phương là một hằng số. Hằng số
này độc lập đối với bản chất của vật, với điểm khảo sát trên bề mặt của vật và với phương
phát xạ. Nó chỉ tùy thuộc độ dài sóng λ và nhiệt độ của vật.


§§6. Ý NGHĨA CỦ
A ĐỊNH LUẬT KIRCHHHOFF.
1. Từ hệ thức (2.6) định nghĩa e
λ
, ta thấy hệ số chói năng lượng đơn sắc e
λ
biểu thị khả
năng phát xạ theo một phương xác định và đối với độ dài sóng λ, của một điểm trên bề mặt
một vật ở một nhiệt độ xác định. Vậy theo định luật Kirchhoff, một vật phát ra bức xạ λ

càng mạnh nếu nó hấp thụ bức xạ này càng mạnh. Nói cách khác, đối với một bức xạ λ, một
vật bức xạ tốt nếu nó là một vật hấp thụ tốt.
2. Cho e
λ
và a
λ
theo thứ tự là hệ số chói năng lượng đơn sắc và hệ số hấp thụ của một
vật bất kỳ;
vd
e
λ
là hệ số chói năng lượng đơn sắc của vật đen, theo định luật Kirchhoff, tỉ số
giữa hệ số chói năng lương đơn sắc và hệ số hấp thụ không tùy thuộc bản chất của vật nên
xét cùng một nhiệt độ và cùng một độ dài sóng λ, ta có :
λ
λ
a
e
= e

λ

Vậy tỉ số giữa hệ số chói năng lượng đơn sắc và hệ số hấp thụ (ứng với cùng một độ dài
sóng và xét cùng một phương) của một vật bất kỳ thì bằng hệ số chói năng lượng đơn sắc
của vật đen đối với cùng một độ dài sóng và ở cùng một nhiệt độ.
3. Ngoài ra với một vật bất kỳ, h
ệ số hấp thụ luôn luôn nhỏ hơn 1 (a
λ
< 1) nên luôn ta có
:

vd
e
λ
> e
λ

Vậy ứng với cùng một độ dài sóng và cùng một nhiệt độ, vật đen là vật có khả năng phát
xạ mạnh nhất.
Ta cũng suy ra từ định luật Kirchhoff
),( TE
a
e
λ
λ
λ
=

e
λ
= aλ .
vd
e
λ

Muốn eλ

0, ta phải có đồng thời a

0 và
vd
e
λ

0. Điều đó có nghĩa là muốn một vật
bất kỳ, ở một nhiệt độ xác định, có thể phát ra bức xạ λ (e

0) thì điều kiện là vật đó phải
hấp thụ được bức xạ λ (a

0) và đồng thời vật đen ở cùng nhiệt độ cũng có khả năng phát ra
bức xạ đó (
vd
e
λ

0).


§§7. SỰ PHÁT XẠ CỦA VẬT ĐEN.
a/ Với vật đen, ta có
dv
a
.
λ

= 1. Vậy

dv
a
.
λ

=
λ
E

Ta đã biết
λ
E
= E (λ, T) là một hàm phổ biến theo nhiệt độ T và độ dài sóng λ, không tùy
thuộc vào bản chất của vật đen cũng như cách thức hiện vật đen. Vì vậy, hệ số chói năng
lượng đơn sắc
dv
a
.
λ
của vật đen cũng không tùy thuộc bản chất và cách thực hiện nó, nói
cách khác ở cùng một nhiệt độ và đối với cùng một độ dài sóng, mọi vật đen đều có cùng
một hệ số chói năng lượng đơn sắc
dv
a
.
λ
.
b/ Đối với vật đen, hệ số hấp thụ avđ( không tùy thuộc phương khảo sát nên hệ số chói
năng lượng đơn sắc evđ( cũng không tùy thuộc phương phát xạ, do đó khả năng phát xạ của
vật đen theo mọi phương đều như nhau
c/ Độ chói năng lượng toàn phần (đối với mọi độ dài sóng từ 0 tới

) e =
λλ
de

trong
trường hợp vật đen cũng độc lập với phương phát xạ. Vì vậy khi nung quả cầu bằng kim loại
phủ mồ hóng (coi như vật đen) tới nhiệt độ phát xạ ánh sáng thấy được, ta thấy như một đĩa
tròn sáng vì khả năng phát xạ của mọi điểm trên hình cầu theo phương tới mắt đều như
nhau.








* Vì Eλ =
dv
a
.
λ

nên ta cũng gọi E
λ
là hệ số chói năng lượng đơn sắc của vật đen và độ
chói năng lượng toàn phần có thể viết là:
E =


0
.
λλ
dE
(7.14)
d/ Hệ thức liên lạc giữa E
λ
và R
λ
:
Bây giờ ta tính năng lượng bức xạ phát ra bởi một đơn vị diện tích bề mặt của vật đen,
theo tất cả mọi phương và gồm tất cả các độ dài sóng. Năng lượng này chính là năng suất
phát xạ toàn phần R.
Năng lượng bức xạ phát ra bởi một đơn vị diện tích
trên bề mặt vật đen trong một đơn vị thời gian giới hạ
n
trong một hình nón sơ cấp góc khối dω là gồm tất cả các
độ dài sóng từ 0 tới ( là dW= E dS cosi dω = E cosi dω.
Xét chùm tia giới hạn giữa hai hình nón có trục là pháp
tuyến AN, các nửa góc ở đỉnh là i và i + di, góc khối của
chùm tia này là :
A
B
i


i
H.4
(C)
N

M

M


H

R
di
A
dii
R
MMMH
d
.sin2
..2
2
'
π
π
ω
==

Vậy dW - 2( E. cosi sini. di.
Năng suất phát xạ toàn phần là :
R =
∫∫
==
2/
0
2/
0
..2...2
ππ
πππ
EdiiSinEdiSiniCosiE

(7.2)

Tương tự ta cũng chứng minh được hệ thức liên hệ giữa số phát xạ đơn sắc R( và hệ số
chói năng lượng đơn sắc E( của vật đen.
R
λ
= π.E
λ
(7.3)
e/ Mật độ năng lượng.
Trong các khảo sát hiện tượng phát xạ của một vật, người ta còn dùng một đại lượng gọi
là mật độ năng lượng.
Xét các độ dài sóng ở trong khoảng λvà λ + dλ. Năng
lượng bức xạ mang bởi chùm tia hình nón sơ cấp có góc
khối dω, phương trung bình MM’, đi qua diện tích dδ
(xung quanh điểm M và thẳng góc với MM’).... trong một
đơn vị thờ
i gian là Eλ.dδ.dω.dλ. Trong một thời gian dt,
đoạn truyền của bức xạ là C. dt. Năng lượng đi qua diện
tích dδ là Eλ.dδ.dω.dλ.dt chiếm một thể tích là C.dt.dδ.
Vậy năng lượng bức xạ trong một đơn vị thể tích là :
λω
σ
λωσ
λ
λ
ddE
CddtC
dtdddE
..
1
..
....
=

Năng lượng bức xạ trong đơn vị thể tích này tính theo tất cả mọi phương là :

=
λ
π
ωλ
λλ
dE
C
ddE
C
.
4
.
1

Dấu tích phân lấy theo toàn thể không gian nênĠ Stêradian.
Đặt năng lượng này là : U
λ
. dλ

Vậy (7.4)

U được gọi là mật độ năng lượng đơn sắc của vật đen. Năng lượng toàn phần chứa trong
đơn vị thể tích trên (theo tất cả mọi phương và với tất cả các độ dài sóng từ 0 tới

) được
gọi là mật độ năng lượng toàn phần U của vật đen. Ta có :
E
C
dE
C
dUU
∫∫
∞∞
===
00
4
.
4
.
π
λ
π
λ
λλ

E
C
dUU
π
λ
λ
4
.
0


==


(7.5)







ER .
π
=
λλ
π
E
C
U
4
=
E
C
U
π
4
=
M


H6
M


H

H6
M

Đây là phiên bản tài liệu đơn giản

Xem phiên bản đầy đủ của tài liệu BỨC XẠ NHIỆT