hệ thống bài tập HH giải tích 12 chọn lọc sắp thứ tự cực hay

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
I/ PHÉP TOÁN VECTƠ TRONG KHÔNG GIAN.
Bài 1: Cho ∆ABC có trong tâm G và M là điểm tùy ý trong k
o
gian.
a/ CMR: MA
2
+ MB
2
+ MC
2
= 3MG
2
+ GA
2
+ GB
2
+ GC
2
.
b/ Tìm quỹ tích các điểm M sao cho MA
2
+ MB
2
+ MC
2
= k
2
.
Bài 2: Cho tứ diện ABCD. Gọi G là trọng tâm ∆BCD và O là trung điểm của AG; M là điểm tùy ý.
a/ CMR:
3 0OA OB OC OD+ + + =
uuur uuur uuur uuur r
b/ CMR: 3MA
2
+MB
2
+MC
2
+MD
2
=6MG
2
+3OA
2
+OB
2
+OC
2
+OD
2
c/ Tìm quỹ tích các điểm M thỏa: 3MA
2
+ MB
2
+ MC
2
+ MD
2
= k
2
.
Bài 3: Cho hình lập phương ABCD.A’B’C’D’. Hai điểm M, N nằm trên hai cạnh B’C’ và CD sao cho MB’ =
CN. CMR: AM ⊥ BN.
Bài 4: Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng :
a/
' ' 2AC A C AC+ =
uuuur uuuur uuur
b/
' ' 2 'AC A C CC− =
uuuur uuuur uuuur
II/ VECTƠ VÀ TỌA ĐỘ TRONG KHÔNG GIAN.
Bài 1: Trong không gian Oxyz. Hãy viết tọa độ của các vectơ:
a/
1 3
2a e e
→ → →
= − +
b/
1 2
2b e e
→ → →
= −
c/
1 2 3
2 7 3c e e e
→ → → →
= − +
d/
2 3
1
2
2
d e e
→ → →
= −
e/
1
3
2
e e
→ →
= −
f/
1
4,5f e
→ →
=
Bài 2: Hãy viết dưới dạng:
x e y e z e
1 2 3
→ → →
+ +
các vectơ sau đây :
a/
( 2;1; 3)u

= −
b/
1 6
( ;0; )
5
3
v

= −
c/
1
( ;0; )
2
m
π

=
d/
( )
0; 2;5p

= −
e/
(0; 0; 2)q

= −
Bài 3: Trong không gian Oxyz, cho 3õ vectơ:
(2; 5;3); (0; 2; 1); (1;7;2)a b c
→ → →
= − = − =
.
a/ Tính tọa độ của vectơ :
x a b c
→ → → →
= − +
4
1
3
3
.
b/ Cho biết M(–1;2;3); hãy tìm tọa độ các điểm A, B, C sao cho:
; ;MA a MB b MC c
→ → →
= = =
uuur uuur uuuur
Bài 4: Tìm tọa độ của vectơ x biết:
a/
0 (1; 2;1)x b khi b
→ → → →
+ = = −
b/
2 (5;4; 1); (2; 5;3)x a b khi a b
→ → → → →
+ = = − = −
c/
2 (5;6;0); ( 3; 4; 1)x a x b khi a b
→ → → → → →
− = + = = − −
Bài 5: Cho điểm M có tọa độ (x; y; z). Gọi M
1
, M
2
, M
3
lần lượt là hình chiếu vuông góc của điểm M trên
các trục Ox, Oy, Oz. Gọi
'
1
M
,
'
1
M
, M
3
’ lần lượt là hình chiếu vuông góc của điểm M trên các mặt phẳng
Oxy, Oyz, Ozx. Tìm tọa độ của các điểm M
1
’, M
2
’, M
3
’. Áp dụng cho M(–1,2,3).
Bài 6: Cho điểm M có tọa độ (x; y; z). Tìm tọa độ của điểm:
a/ N đối xứng với M qua mặt phẳng Oxy. b/ P đối xứng với M qua trục Ox.
c/ Q đối xứng với M qua gốc tọa độ O. Áp dụng với M(–2; 5; 1).
Bài 7: Trong không gian Oxyz, cho 3 điểm: A(0; 2; –1); B(1; 1; 3) và C(–1; 2; –2).
a/ Tìm tọa độ trọng tâm G của ∆ABC.
b/ Tính diện tích ∆ABC.
Bài 8: Cho hình hộp ABCD.A’B’C’D’ biết: A(1; 0; 1); B(2; 1; 2); D(1; –1; 1); C’(4; 5; –5).
a/ Tìm tọa độ các đỉnh còn lại của hình hộp.
b/ Tìm tọa độ tâm của các mặt ABCD và ABB’A’ của hình hộp đó.
Bài 9: Cho hai bộ 3 điểm: A(1; 3; 1); B(0; 1; 2); C(0; 0; 1) và A’(1;1;1); B’(–4; 3; 1); C’(–9; 5; 1).
Hỏi bộ nào có 3 điểm thẳng hàng ?
Bài 10: Tính tọa độ của vectơ tích có hướng của hai vectơ
a b
→ →
,
trong mỗi trường hợp sau:
a/
(3;0; 6); (2; 4;5)a b
→ →
= − = −
b/
(1; 5;2); (4;3; 5)a b
→ →
= − = −
1
c/
(0; 2; 3); (1; 3; 2)a b
→ →
= = −
d/
(1; 1;1); (0;1;2)a b
→ →
= − =
e/
(4;3; 4); (2; 1;2)a b
→ →
= = −
Bài 11: Tính khoảng cách giữa hai điểm A, B trong mỗi trường hợp:
a/ A(4;–1; 1); B(2; 1; 0) b/ A(2; 3; 4); B(6; 0; 4) c/ A(
2
; 1; 0); B(1;
2
; 1)
Bài 12: Tính góc giữa hai vectơ
a b
→ →
,
trong mỗi trường hợp sau :
a/
(4;3;1); ( 1; 2;3)a b
→ →
= = −
b/
(2; 4;5), (6;0; 3)a b
→ →
= = −
Bài 13: Cho ∆ABC với A(1; 0; 0), B(0; 0; 1), C(2; 1; 1).
a/ Tính các góc của ∆ABC.
b/ Tìm tọa độ trong tâm G của ∆ABC.
c/ Tính chu vi và diện tích tam giác đó.
Bài 14: Tìm điểm M trên trục Oy, biết M cách đều 2 điểm A(3; 1; 0) và B(–2; 4; 1).
Bài 15: Trên mặt phẳng Oxz tìm điểm M cách đều 3 điểm A(1; 1; 1), B(–1; 1; 0) và C(3; 1; –1).
Bài 16: Tính diện tích của hình bình hành ABCD có
(6;3; 2)AB = −
uuur

(3; 2; 6)AD = −
uuur
.
Bài 17: Xét sự đồng phẳng của ba vectơ
, ,a b c
ur ur ur
trong mỗi tr.hợp sau:
a/
(4; 2;5); (3;1;3); (2;0;1)a b c
→ → →
= = =
b/
(1; 1;1); (0;1; 2); (4;2;3)a b c
→ → →
= − = =
c/
(4;3; 4); (2; 1; 2); (1; 2;1)a b c
→ → →
= = − =
d/
( 3;1; 2); (1;1;1); ( 2; 2;1)a b c
→ → →
= − − = = −
Bài 18: Cho hình hộp ABCD.A’B’C’D’, biết A(1; 0; 1) và B(2; 1; 2);
OD i j k= − +
uuur r ur ur
,
' 4 5 5OC i j k= − −
uuuur r ur ur
.
Tìm tọa độ các đỉnh còn lại.
Bài 19: Cho A(2;–1; 1), B(4; 5; –2). Đường thẳng Ab cắt mp Oxyz tại điểm M. Điểm M chia đoạn thẳng AB
theo tỉ số nào? Tìm tọa độ điểm M.
Bài 20: Cho A(1; 1; 1), B(5; 1; –2) và C(7; 9; 1).
a/ Chứng minh A, B, C không thẳng hàng.
b/ Phân giác trong góc A của ∆ABC cắt BC tại D. Tìm tọa độ của D.
c/ Tính cosin của góc BAC và diện tích ∆ABC.
Bài 21: Cho A(1; 2; 1), B(5; 3; 4) và C(8; 3; –2).
a/ CMR: ABC là tam giác vuông.
b/ Tìm tọa độ chân đường phân giác trong của tam giác kẻ từ B.
c/ Tính diện tích của ∆ABC.
Bài 22: Cho A(1; 0; 1), B(–1; 1; 2), C(–1; 1; 0) và D(2; –1; –2).
a/ CMR: A, B, C, D là bốn đỉnh của hình chữ nhật.
b/ Tính đường cao của ABCD kẻ từ đỉnh D.
Bài 23: Cho A(1; 0; 0), B(0; 0; 1) và
2OC i j k= + +
uuur r ur ur
.
a/ CMR: A, B, C là ba đỉnh của một tam giác.
b/ Tính chu vi và diện tích của ∆ABC.
c/ Tìm tọa độ đỉnh D để tứ giác ABCD là hình bình hành.
d/ Tính độ dài đường cao của ∆ABC hạ từ đỉnh A.
e/ Tính các góc của ∆ABC.
Bài 24: Cho A(1; 0; 0), B(0; 1; 0), C(0; 0; 1) và D(–2; 1; –1).
a/ CMR: A, B, C, D là bốn đỉnh của một tứ diện.
b/ Tính góc tạo bởi các cặp cạnh đối diện của tứ diện ABCD.
c/ Tính thể tích tứ diện ABCD và độ dài đường cao hạ từ A.
Bài 25: Cho A(1; –2; 2), B(1; 4; 0), C(–4; 1; 1) và D(–5; –5; 3).
a/ CMR: tứ giác ABCD có hai đường chéo AC và BD vuông góc.
b/ Tính diện tích tứ giác ABCD.
Bài 26: Cho tứ diện PABC, biết P(1; –2; 1), A(2; 4; 1), B(–1; 0; 1) và C(–1; 4; 2). Tìm tọa độ hình chiếu
vuông góc của P trên (ABC).
2
Bài 27: Cho A(4; 2; 6), B(10; –2; 4), C(4; –4; 0) và
( )
2OD k i= −
uuur ur r
.
a/ CMR: ABCD là hình thoi. b/ Tính diện tích của hình thoi.
Bài 28: Cho
5
2; ;1
2
A
 
 
 
,
5 3
; ;0
2 2
B
 
 
 
,
3
5; ;3
2
C
 
 
 
,
9 5
; ; 4
2 2
D
 
 
 
.
a/ CMR: bốn điểm trên là bốn đỉnh của hình bình hành.
b/ Tính diện tích hình bình hành đó.
Bài 29: Cho A(1; 0; 1), B(–2; 1; 3) và C(1; 4; 0).
a/ Tìm hệ thức giữa x, y, z để điểm M(x; y; z) thuộc mp(ABC).
b/ Tìm trực tâm H của ∆ABC.
c/ Tìm tâm I và bán kính R của đường tròn ngoại tiếp ∆ABC.
III/ MẶT PHẲNG TRONG KHÔNG GIAN.
A/ Phương trình của mặt phẳng.
Bài 1: Lập phương trình tham số và tổng quát của mp(α) đi qua 3 đ A(2; –5; 1), B(3; 4; –2) C(0; 0; –1).
Bài 2: Cho điểm M(2; –1; 3) và mp(α) có p.trình 2x –y + 3z –1 = 0.
a/ Lập pt tổng quát của mp(β) đi qua M và song song với mp(α).
b/ Hãy lập phương trình tham số của mp(β) nói trên.
Bài 3: Hãy lập pt mp(α) đi qua 2 điểm M(7; 2; –3), N(5; 6; –4) và song song vơi trục Oz.
Bài 4: Lập pt mp(α) đi qua điểm M(2; –1; 2) và vuông góc với các mp: 2x – z + 1 = 0 và y = 0.
Bài 5: Lập pt mp(α) đi qua gốc tọa độ và vuông góc với các mp: 2x – y + 3z – 1 = 0 và x + 2y + z = 0.
Bài 6: Lập pt mp(α) đi qua hai điểm A(1; –1; –2) B(3; 1; 1) và vuông góc với mp x – 2y + 3z – 5 = 0.
Bài 7: Cho mpα có phương trình tham số :
x t
y t
z t t
= +
= − +
= − − +





1
2
5 2
1
2
1 2
a/ Hãy lập phương trình tổng quát của mp(α’) đi qua gốc tọa độ và song song với mpα.
b/ Tính góc ϕ tạo bởi mp(α’) và mp(β) có pt: x + y + 2z –10 = 0.
Bài 8: Tính khoảng cách từ điểm A(7; 3; 4) đến mp(α) có phương trình: 6x – 3y + 2z –13 = 0.
Bài 9: Cho mp(α) : 2x – 2y – z – 3 = 0. Lập phương trình mp(β) song song với mp(α) và cách mp(α) một
khoảng d = 5.
Bài 10: Viết phương trình mặt phẳng trong mỗi trường hợp sau:
a/ Đi qua M(1; 3; –2) và vuông góc với trục Oy.
b/ Đi qua M(1; 3; –2) và vuông góc với đ.thẳng AB với A(0; 2; –3) và B(1; –4; 1).
c/ Đi qua M(1; 3; –2) và song song với mp: 2x – y + 3z + 4 = 0.
Bài 11: Cho hai điểm A(2; 3; –4) và B(4; –1; 0). Viết pt mặt phẳng trung trực của đoạn thẳng AB.
Bài 12: Cho ∆ABC, với A(–1; 2; 3), B(2; –4; 3) và C(4; 5; 6). Viết phương trình mp(ABC).
Bài 13: Viết ptmp đi qua 2điểm P(3; 1; –1) và Q(2; –1; 4) và vuông góc với mp: 2x – y + 3z + 1 = 0.
Bài 14: Cho A(2; 3; 4). Hãy viết p.trình mp(P) đi qua các hình chiếu của A trên các trục tọa độ, và p.trình
mp(Q) đi qua các hình chiếu của A trên các mặt phẳng tọa độ.
Bài 15: Viết p.trình mp qua điểm M(2; –1; 2), ssong với trục Oy và vuông góc với mp: 2x – y + 3z + 4 = 0.
Bài 16: Viết phương trình mặt phẳng trong mỗi trường hợp sau:
a/ Qua I(–1;–2;–5) và đồng thời ⊥ với hai mp (P): x + 2y –3z +1 = 0 và (Q): 2x – 3y + z + 1 = 0.
b/ Qua M(2; –1; 4) và cắt chiều dương các trục tọa độ Ox, Oy, Oz lần lượt tại P, Q, R sao cho :
OR = 2OP = 2OQ.
c/ Qua giao tuyến của hai mặt phẳng (P): 2x – y –12z – 3 = 0, (Q): 3x + y – 7z – 2 = 0 và vuông góc
với mp(R): x + 2y + 5z – 1 = 0.
d/ Qua giao tuyến của hai mặt phẳng (P): x + 3y + 5z – 4 = 0, mp(Q): x – y – 2z + 7 = 0 và song song
với trục Oy.
e/ Là mp trung trực của đoạn thẳng AB với A(2; 1; 0), B(–1; 2; 3).
f/ mp(X) nhận M(1; 2; 3) làm hình chiếu vuông góc của N(2; 0; 4) lên trên mp(X).
B/ Vò trí tương đối của hai mặt phẳng.
3
Bài 1: Xác đònh m để hai mặt phẳng: Song song với nhau? Trùng nhau? Cắt nhau?
a/ (P): 2x –my + 3z –6 + m = 0; (Q): (m+3)x –2y + (5m +1)z–10 = 0
b/ (P): (1– m)x + (m + 2)y + mz + 1 = 0;
(Q): 4mx – (7m + 3)y –3(m + 1)z + 2m = 0
Bài 2: Cho 3 mặt phẳng (P): 2x – y + z + 1 = 0; (Q): x + 3y –z + 2 = 0 và (R): –2x + 2y+ 3z + 3 = 0.
a/ Chứng minh (P) cắt (Q).
b/ Viết p.trình mp(S) qua giao tuyến của hai mp(P), (Q) và qua điểm M(1; 2; 1).
c/ Viết p.trình mp(T) qua giao tuyến của hai mp(P), (Q) và song song với mp(R).
d/ Viết p.trình mp(U) qua giao tuyến của hai mp(P), (Q) và vuông góc với mp(R).
Bài 3: Viết phương trình mặt phẳng trong mỗi trường hợp sau:
a/ Đi qua M(2; 1; –1) và qua giao tuyến của hai mặt phẳng có phương trình: x – y + z – 4 = 0 ; 3x – y
+ z – 1 = 0.
b/ Qua giao tuyến của hai m.phẳng: y + 2z – 4 = 0; x + y – z – 3 = 0 đồng thời song song với mp: x +
y + z = 0.
c/ Qua giao tuyến của hai m.phẳng: 3y – y + z –2 = 0; x + 4y –5 = 0 đồng thời vuông góc với mp: 2x
– z + 7 = 0.
Bài 4: Tìm điểm chung của ba mặt phẳng:
a/ x + 2y – z – 6 = 0; 2x – y + 3z + 13 = 0; 3x – 2y + 3z + 16 = 0
b/ 4x + y + 3z – 1 = 0; 8x – y + z – 5 = 0; 2x – y – 2z – 5 = 0
Bài 5: Cho tứ diện ABCD với A(2; 1; 3), B(3; –2; 1), C(–4; 1; 1) và D(1; 1; –3).
a/ Viết phương trình các mặt phẳng (ABC), (ABD).
b/ Tính góc giữa (ABC) và (ABD).
c/ Tìm pt mp(P) chứa CD và // với vectơ
v
ur
= (m; 1–m; 1+m). Đònh m để mp(P) vuông góc với
mp(ABC).
d/ Đònh m, n để mp(P) trùng với mp: 4x + ny + 5z + 1 – m = 0.
Bài 6: Viết p.trình mặt phẳng qua M(0; 2; 0), N(2; 0; 0) và tạo với mpOyz một góc 60
0
.
Bài 7: Tìm điểm M’ đối xứng của M qua mp(P) biết:
a/ M(1; 1; 1) và mp(P): x + y – 2z – 6 = 0.
b/ M(2; –1; 3) và mp(P): 2x – y – 2z – 5 = 0.
Bài 8: Cho tứ diện ABCD với A(–1; –5; 1), B(2; –4; 1), C(2; 0; –3) và D(0; 2; 2).
a/ Lập phương trình các mặt phẳng (ABC), (ABD).
b/ Tính cosin của góc nhò diện cạnh AB, cạnh BC.
c/ Tìm điểm đối xứng của điểm A qua các mp(BCD), (OBC).
Bài 9: Cho đường thẳng MN biết M(–6; 6; –5), N(12; –6; 1).
a/ Tìm giao điểm của đường thẳng MN với các m.phẳng tọa độ.
b/ Tìm giao điểm của đường thẳng MN với mp(α) có phương trình: x– 2y + z–9 = 0 và tính sin của
góc ϕ giữa đ.thẳng MN và mp(α).
c/ Viết p.trình tổng quát của mp chứa đ.thẳng MN và // với trục Oz.
C/ Chùm mặt phẳng.
Bài 1: Cho hai mặt phẳng cắt nhau (P): 3x – 2y + 2z + 7 = 0 và (Q): 5x – 4y + 3z + 1 = 0.
a/ Viết phương trình mp(R) qua M(1; –2; 1) và chứa giao tuyến của hai mp(P) và (Q).
b/ Viết pt mp(T) vuông góc với mp: x + 2y + z = 0 và chứa giao tuyến của hai mp(P) và (Q).
c/ Viết phương trình mp(U) chứa giao tuyến của hai mp(P) và (Q) và tạo với mp: x + y – z = 0 một
góc nhọn a mà cosa = 3/125.
Bài 2: Đònh l, m để mp(P):5x + ly + 4z + m = 0 thuộc chùm mp: λ(3x – 7y + z – 3) + µ(x – 9y – 2z + 5) = 0
IV/ ĐƯỜNG THẲNG TRONG KHÔNG GIAN.
A/ Phương trình của đường thẳng.
Bài 1: Lập phương trình tham số và tổng quát của đường thẳng d đi qua điểm M(2; 0;–3) và nhận
(2; 3;5)a

= −
làm vectơ chỉ phương.
Bài 2: Lập p.trình của đường thẳng d đi qua điểm M(–2; 6; –3) và:
4
a/ Song song với đường thẳng a:
x t
y t
z t
= +
= − −
= − −





1 5
2 2
1
b/ Lần lượt song song với các trục Ox, Oy, Oz.
Bài 3: Lập p.trình tham số và p.trình tổng quát của đường thẳng d:
a/ Đi qua hai điểm A(1; 0; –3), B(3, –1; 0).
b/ Đi qua điểm M(2; 3;–5) và // với đ.thẳng:
3 2 7 0
3 2 3 0
x y z
x y z
− + − =
+ − + =



.
Bài 4: Trong mpOxyz cho 3 điểm A(–1; –2; 0) B(2; 1; –1) C(0; 0; 1).
a/ Hãy viết phương trình tham số của đường thẳng AB.
b/ Tính đường cao CH của ∆ABC và tính diện tích ∆ABC.
c/ Tính thể tích hình tứ diện OABC.
Bài 5: Viết p.trình tam số, chính tắc, tổng quát của đ.thẳng d biết:
a/ d qua M(2; 0; –1) và có vectơ chỉ phương là (–1; 3; 5).
b/ d qua M(–2; 1; 2) và có vectơ chỉ phương là (0; 0; –3).
c/ d qua M(2; 3; –1) và N(1; 2; 4).
Bài 6: Viết phương trình của đường thẳng d biết:
a/ d qua M(4; 3; 1) và // với đ.thẳng:( x = 1 + 2t; y = –3t; z = 3 + 2t).
b/ d qua M(–2; 3; 1) và song song với đ.thẳng:
2 1 2
2 0 3
x y z− + +
= =
.
c/ d qua M(1; 2; –1) và song song với đ.thẳng:
3 0
2 5 4 0
x y z
x y z
+ − + =


− + − =

.
Bài 7: Viết p.trình tổng quát của đ.thẳng d dưới dạng giao của hai m.phẳng song song với các trục Ox, Oy
biết p.trình tham số của d là:
a/
2 2
1 3
4 3
x t
y t
z t
= +


= − +


= − +

b/
1
2 4
3 2
x t
y t
z t
= − +


= −


= +

Bài 8: Viết p.trình chính tắc của đ.thẳng d biết pt tổng quát của nó là:
a/
2 5 0
2 3 0
x y z
x z
− + + =


− + =

b/
3 0
2 6 2 0
x y z
x y z
+ − + =


− + − =

Bài 9: Viết ptrình hình chiếu vuông góc của đt d:
1 2 3
2 3 1
x y z− + −
= =
a/ Trên mpOxy b/ Trên mpOxz c/ Trên mpOyz
Bài 10: Viết ptrình hình chiếu vuông góc của đt d:
2 5 0
2 3 0
x y z
x z
− + + =


− + =

trên mp: x + y + z – 7 = 0.
Bài 11: Viết phương trình đường thẳng trong các trường hợp sau:
a/ Đi qua điểm (–2; 1; 0) và vuông góc với mp: x + 2y – 2z = 0
b/ Đi qua điểm (2; –1; 1) và vuông góc với hai đường thằng:
(d
1
):
1 0
2 0
x y
x z
+ + =


− =

; (d
2
):
2 1 0
0
x y
z
+ − =


=

Bài 12: Cho A(2; 3; 1), B(4; 1; –2), C(6; 3; 7) và D(–5; –4; 8). Viết ptts, chính tắc và tổng quát của:
a/ Đường thẳng BM, với M là trọng tâm của ∆ACD.
b/ Đường cao AH của tứ diện ABCD.
Bài 13: Viết ptct của đ.thẳng d đi qua M(1; 4; –2) và ssong với đ.thẳng:
6 2 2 3 0
3 5 2 1 0
x y z
x y z
+ + + =


− − − =

.
Bài 14: Viết ptts của đt nằm trong mp(P): x + 3y – z + 4 = 0 và vuông góc với đt d:
2 3 0
2 0
x z
y z
− − =


− =

tại giao
điểm của đường thẳng d và mp(P).
5